If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+6y-42=0
a = 1; b = 6; c = -42;
Δ = b2-4ac
Δ = 62-4·1·(-42)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{51}}{2*1}=\frac{-6-2\sqrt{51}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{51}}{2*1}=\frac{-6+2\sqrt{51}}{2} $
| (2*3.14*(4.5^2))+(2*3.14*(4.5^2)*x)=197.82 | | 28=19+y | | 6+3-x=1 | | X+50+x–10=180 | | (2*3.14*4.5^2)+(2*3.14*4.5^2*x)=197.82 | | -12y+8(23+1y)=18 | | 14y=59 | | 262=1/3(b)(10) | | −11−5a=6 | | -5x+x+5=2(-2x+2)+1 | | 5x/2+x-4/2=11 | | 9h=167 | | 2x+18=12+5x | | X-7(4.66667x+10)=22 | | 40=-16t+64t | | 20-2x^2=28 | | 3(t-7)=5(t-1)–4 | | 9x=11×+7 | | −99=9n | | (7x+9)+(6x+7)=180 | | 21=19+a | | 22=4h–6 | | -23=5f-4f | | y^2-16y-71=0 | | 3y/2-y/3=5(y-4) | | 4(2m-1)=36-2m | | 7(m-2)=2(m+3) | | t+18=28 | | 46=4y | | 11+y-4y=29 | | 2(5p-3)=30 | | 14+6x=-32 |